Electrical behavior of memristive networks

Research background

Juan Pablo Carbajal

Electronics and Information Systems department
Ghent University
Ghent, Belgium
juanpablo.carbajal@ugent.be

February 10, 2015
1. Summarized history of the memristor
 - Timeline
 - Leon Chua’s memristor

2. Mathematical models of memristor
 - Memristive dynamical systems
 - HP TiO$_2$ memristor
 - I-V curves

3. Analytic solutions of memristor dynamics
 - Bernoulli-type memristor
 - Analytic solutions
 - Bad news

4. Memristors that exist and compute
 - Mechanics of memristance
 - Morphology
 - Computing applications

5. Potential directions for future work
1. **Summarized history of the memristor**
 - Timeline
 - Leon Chua’s memristor

2. **Mathematical models of memristor**
 - Memristive dynamical systems
 - HP TiO$_2$ memristor
 - I-V curves

3. **Analytic solutions of memristor dynamics**
 - Bernoulli-type memristor
 - Analytic solutions
 - Bad news

4. **Memristors that exist and compute**
 - Mechanics of memristance
 - Morphology
 - Computing applications

5. **Potential directions for future work**
A bit of history

Timeline
Leon Chua’s memristor

- Resistive Switching
- Memristor Theory
- Silicon Slowdown
- Analytic Results

200 yr
Leon Ong Chua (1971) realized that not all circuit variables were related. He postulated a new passive circuit element which instantaneous resistance depends on the history of the input. The **memristor** is a nonlinear resistor with memory.

D. B. Strukov et al. (2008). The missing memristor found. Nature, 453(7191), 8083. doi:10.1038/nature06932
1. Summarized history of the memristor
 - Timeline
 - Leon Chua’s memristor

2. Mathematical models of memristor
 - Memristive dynamical systems
 - HP TiO$_2$ memristor
 - I-V curves

3. Analytic solutions of memristor dynamics
 - Bernoulli-type memristor
 - Analytic solutions
 - Bad news

4. Memristors that exist and compute
 - Mechanics of memristance
 - Morphology
 - Computing applications

5. Potential directions for future work

J.P. Carbajal
Memristive networks
Memristor and memristive systems

Memristor \((V = 0 \Leftrightarrow I = 0) \)

\[
V = R(w)I \quad (1)
\]

\[
\dot{w} = f(I) \quad (2)
\]

Memristive system

\[
V = R(w, I)I \quad (3)
\]

\[
\dot{w} = f(w, I) \quad (4)
\]
Figure 1: HP TiO$_2$ memristor

\[V(t) = R_{\text{off}} \left(1 - \frac{\mu}{D^2} R_{\text{on}} q(t) \right) I(t) \]

\[\mathcal{M}(q) \]

(5)
HP memristor response

Figure 2: Applied voltage (blue) and resulting current (green) as a function of time. The numbers 1-6 label successive waves in the applied

J.P. Carbajal

Memristive networks
1. Summarized history of the memristor
 - Timeline
 - Leon Chua’s memristor

2. Mathematical models of memristor
 - Memristive dynamical systems
 - HP TiO$_2$ memristor
 - I-V curves

3. Analytic solutions of memristor dynamics
 - Bernoulli-type memristor
 - Analytic solutions
 - Bad news

4. Memristors that exist and compute
 - Mechanics of memristance
 - Morphology
 - Computing applications

5. Potential directions for future work
Jakob Bernoulli’s equation

Charge controlled memristor, voltage driven

\[I(t) = \mathcal{M}^{-1}(q) V(t) \quad (6) \]

\[\dot{I}(t) - \frac{\dot{V}(t)}{V(t)} I(t) = -\frac{d\mathcal{M}}{dq} \frac{1}{V(t)} I^3(t) \quad (7) \]

\[I(t) = \mathcal{M}^{-1}(q) V(t) \quad (6) \]

\[\dot{I}(t) - \frac{\dot{V}(t)}{V(t)} I(t) = -\frac{d\mathcal{M}}{dq} \frac{1}{V(t)} I^3(t) \quad (7) \]

Bernoulli’s equation

\[\dot{y} + p(t)y = s(t)y^n \quad (8) \]

\[y(t)^{1-n} = \frac{1}{m(t)} \left[B + (1 - n) \int_{t_0}^{t} m(\tau)s(\tau)d\tau \right] \quad (9) \]

\[m(t) = \exp \left((1 - n) \int_{t_0}^{t} p(x)dx \right) \quad (10) \]

J.P. Carbajal
Memristive networks
Analitic solutions

Charge controlled memristor, voltage driven

\[I(t) = \mathcal{M}^{-1}(q)V(t) \]

\[\dot{I}(t) - \frac{\dot{V}(t)}{V(t)} I(t) = -\frac{d\mathcal{M}}{dq} \frac{1}{V(t)} I^3(t) \]

Has the analitic solution

\[I(t) = V(t) \left[\mathcal{M}_0^2 + 2 \int_0^t \frac{d\mathcal{M}(q)}{dq} V(\tau) d\tau \right]^{-\frac{1}{2}} \]

Using memristance from Eq. (5) we get all the responses observed.
I-V memristor curves

<table>
<thead>
<tr>
<th>$\alpha = 1$</th>
<th>β_1</th>
<th></th>
<th>β_1</th>
<th></th>
<th>β_1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{W}(t) = k_1 V(t)$</td>
<td>-0.499</td>
<td></td>
<td>-0.1</td>
<td></td>
<td>+0.5</td>
<td></td>
</tr>
<tr>
<td>$\dot{W}(t) = k_1 V^2(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\alpha = 2$</th>
<th></th>
<th>β_1</th>
<th></th>
<th></th>
<th>β_1</th>
<th></th>
<th>β_1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{W}(t) = k_1 V(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\dot{W}(t) = k_1 V^2(t)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bad news
The physics of the models is inaccurate

The current theoretical models of memristors are criticized:
- Doped region diffuses to equilibrate concentration gradient. Memristor forgets.
- Memristor’s internal state cannot be continuous: Landauer’s principle of the minimum energy costs for information processing.

1. Summarized history of the memristor
 - Timeline
 - Leon Chua’s memristor

2. Mathematical models of memristor
 - Memristive dynamical systems
 - HP TiO$_2$ memristor
 - I-V curves

3. Analytic solutions of memristor dynamics
 - Bernoulli-type memristor
 - Analytic solutions
 - Bad news

4. Memristors that exist and compute
 - Mechanics of memristance
 - Morphology
 - Computing applications

5. Potential directions for future work
Ag-H$_2$O-Pt based atomic switches: morphology
Macroscopic self-assembly: Pelesko chain

J.P. Carbajal Memristive networks
"... when confronted with a new device, one needs to determine whether it has a natural basis for computation that is different from familiar paradigms."
MEMRISTOR CELLULAR AUTOMATA
AND MEMRISTOR DISCRETE-TIME
CELLULAR NEURAL NETWORKS

MAKOTO ITOH
Department of Information and Communication Engineering,
Fukuoka Institute of Technology,
Fukuoka 811-0295, Japan

LEON O. CHUA
Department of Electrical Engineering and Computer Sciences,
1. Summarized history of the memristor
 - Timeline
 - Leon Chua’s memristor

2. Mathematical models of memristor
 - Memristive dynamical systems
 - HP TiO$_2$ memristor
 - I-V curves

3. Analytic solutions of memristor dynamics
 - Bernoulli-type memristor
 - Analytic solutions
 - Bad news

4. Memristors that exist and compute
 - Mechanics of memristance
 - Morphology
 - Computing applications

5. Potential directions for future work
There are several paths to pursue in the short time scale. All approaches are simulation based with potential collaboration with experimental groups.

Low level

<table>
<thead>
<tr>
<th>Statistical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aim: device variability.</td>
</tr>
<tr>
<td>- Simulated growth.</td>
</tr>
<tr>
<td>- Properties of morphology.</td>
</tr>
</tbody>
</table>

High level

<table>
<thead>
<tr>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aim: models of computation.</td>
</tr>
<tr>
<td>- Simplify/idealized models.</td>
</tr>
<tr>
<td>- Large networks.</td>
</tr>
</tbody>
</table>
Thank you!